原创

JVM之垃圾回收相关算法


JVM自学指南已经开源到GIthub项目 JVM自学指南 欢迎star fork 万分感谢!

一、判断阶段:对象存活判断

  • 在堆里存放着几乎所有的Java对象实例,在GC执行垃圾回收之前,首先需要区分出内存中哪些是存活对象,哪些是已经死亡的对象。只有被标记为己经死亡的对象,GC才会在执行垃圾回收时,释放掉其所占用的内存空间,因此这个过程我们可以称为垃圾标记阶段。

  • 那么在JVM中究竟是如何标记一个死亡对象呢?简单来说,当一个对象已经不再被任何的存活对象继续引用时,就可以宣判为已经死亡。

  • 判断对象存活一般有两种方式:==引用计数算法==和==可达性分析算法==。

1、引用计数算法

1.1 概念

  • 引用计数算法(Reference Counting)比较简单,对每个对象保存一个整型 的引用计数器属性。用于记录对象被引用的情况。

  • 对于一个对象A,只要有任何一个对象引用了A,则A的引用计数器就加1;当引用失效时,引用计数器就减1。只要对象A的引用计数器的值为0,即表示对象A不可能再被使用,可进行回收。

1.2 优点

  • 实现简单,垃圾对象便于辨识;判定效率高,回收没有延迟性。

1.3 缺点

  • 需要单独的字段存储计数器,这样的做法增加了存储空间的开销。

  • 每次赋值都需要更新计数器,伴随着加法和减法操作,这增加了时间开销。

  • 引用计数器有一个严重的问题,即无法处理循环引用的情况。这是一 条致命缺陷,导致==在Java的垃圾回收器中没有使用这类算法==。

    image-20210703094326043

1.4 代码测试Java中没有使用引用计数算法

/**
 * 代码测试Java中没有使用引用计数算法来判断对象是否为垃圾
 * VM参数:-XX:+PrintGCDetails
 */
public class RefCountGC {
    
    //故意占用空间10M
    byte data[] = new byte[1024 * 1024 * 10];

    private Object ref = null;

    public static void main(String[] args) {

        RefCountGC refCountGC1 = new RefCountGC();
        RefCountGC refCountGC2 = new RefCountGC();

        //循环引用
        refCountGC1.ref = refCountGC2;
        refCountGC2.ref = refCountGC1;

        refCountGC1 = null;
        refCountGC2 = null;

        //手动GC
        System.gc();
        
    }
}
  • 手动GC关闭的时候,未执行GC,新生区占用used 25682K

image-20210703101536496

  • 手动执行GC打开,执行GC,新生区占用650K

    image-20210703101147058

说明执行GC之后,两个互相引用的对象被回收,说明Java使用的不是引用计数算法。

2、可达性分析算法/追踪性垃圾收集

  • 相对于引用计数而言,可达性分析算法解决了循环引用的问题。防止了内存泄露的发生。

  • 基本思路

    • 可达性分析算法是以根对象(GCRoots)为起始点,按照从上至下的方式==搜索被根对象集合所连接的目标对象是否可达。==

      image-20210703102423042

    • 使用可达性分析算法之后,内存中存活的对象都会被根对象集合直接或者间接连接,搜索走过的路径叫做==引用链==。

    • 如果目标对象没有任何引用链相连,则表示不可达,为垃圾。

  • Java语言中,GCRoots链包括以下几类元素

    • 各个线程被调用的方法中的参数,局部变量
    • 本地方法栈内JNT(本地方法)引用的对象
    • 方法区中静态属性引用的对象
      • 比如: Java类中引用类型静态变量
    • 方法区中的常量引用的对象
      • 比如字符串常量池的引用
    • 所有被同步锁持有的对象
    • 虚拟机的内部引用
      • 基本数据类型的包装类,常驻的异常对象,系统类加载器
    • 反映java虚拟机内部情况的JMXBean、JVMTI中注册的回调、本地代码缓存等
    • 除了这些固定的GCRoots集合以外,根据用户所选用的垃圾收集器以及当前回收的内存区域不同,还可以有其他对象“临时性”地加入,共同构成完整GC Roots集合。比如:分代收集和局部回收(Partial GC)。
    • 如果只针对Java堆中的某一块区域进行垃圾回收(比如:典型的只针 对新生代), 必须考虑到内存区域是虚拟机自己的实现细节,更不是孤立封闭的, 这个区域的对象完全有可能被其他区域的对象所引用,这时候就需要一.并将关联的区域对象也加入GC Roots集合中去考虑,才能保证可达性分析的准确性。
  • 小技巧:由于Root采用栈方式存放变量和指针,所以如果一个指针,它保存了堆内存里面的对象,但是自己又不存放在堆内存里面,那它就是一个Root。

    image-20210703205542925

    注意

    • 如果要使用可达性分析算法来判断内存是否可回收,那么分析工作必须在一个能保障一致性的快照中进行。这点不满足的话分析结果的准确性就无法保证。

    • 这点也是导致GC进行时必须“StopTheWorld"的一个重要原因。

      • ➢即使是号称(几乎)不会发生停顿的CMS收集器中,枚举根节点时也是必须要停顿的。

二、对象的finalization机制

  • Java语言提供了对象终止(finalization)机制来允许开发人员提供对象被销毁之前的自定义处理逻辑。
  • 当垃圾回收器发现没有引用指向一个对象,即:垃圾回收此对象之前,总会先调用这个对象的finalize()方法。
  • finalize()方法允许在子类中被重写,用于在对象被回收时进行资源释放。通常在这个方法中进行一些资源释放和清理的工作,比如关闭文件、套接字和数据库连接等。
  • 永远不要主动调用某个对象的finalize ()方法,应该交给垃圾回收机制调用。理由包括下面三点:
    • ➢在finalize()时可能会导致对象复活。
    • ➢finalize()方法的执行时间是没有保障的,它完全由GC线程决定,极端情况下,若不发生GC,则finalize()方法将没有执行机会。
    • ➢一个糟糕的finalize ()会严重影响GC的性能。
  • 从功能上来说,finalize()方法与C++ 中的析构函数比较相似,但是Java采用的是基于垃圾回收器的自动内存管理机制,所以finalize()方法在本质,上不同于C++ 中的析构函数。

1.对象是否"死亡

  • 由于finalize ()方法的存在,==虚拟机中的对象一般处于三种可能的状态。==
  • 如果从所有的根节点都无法访问到某个对象,说明对象己经不再使用了。一般来说,此对象需要被回收。但事实上,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段。==一个无法触及的对象有可能在某一个条件下“复活”自己==,如果这样,那么对它的回收就是不合理的,为此,定义虚拟机中的对象可能的三种状态。如下:
    • ➢==可触及的==:从根节点开始,可以到达这个对象。
    • ➢==可复活的==:对象的所有引用都被释放,但是对象有可能在finalize()中复活。
    • ➢==不可触及的==:对象的finalize()被调用,并且没有复活,那么就会进入不可触及状态。不可触及的对象不可能被复活,因为finalize() 只会被调用一一次。
  • 以上3种状态中,是由于finalize()方法的存在,进行的区分。只有在对象不可触及时才可以被回收。

2.判定是否可以回收具体过程

如果对象objA到GC Roots没有引用链,则进行第一 次标记。

进行筛选,判断此对象是否有必要执行finalize()方法

  1. ①如果对 象objA没有重写finalize()方法,或者finalize ()方法已经被虚拟机调用过,则虚拟机视为“没有必要执行”,objA被判定为不可触及的。
  2. ②如果对象objA重写了finalize()方法,且还未执行过,那么objA会被插入到F一Queue队列中,由一个虚拟机自动创建的、低优先级的Finalizer线程触发其finalize()方法执行。
  3. ③finalize()方法是对象逃脱死亡的最后机会,稍后Gc会对F一Queue队列中的对象进行第二次标记。如果objA在finalize()方法中与引用链上的任何一个对象建立了联系,那么在第二次标记时,objA会被移出“即将回收”集合。之后,对象会再次出现没有引用存在的情况。 在这个情况下,finalize方法不会被再次调用,对象会直接变成不可触及的状态,也就是说,一个对象的finalize方法只会被调用一次。

3.代码测试对象复活

/**
 * 测试Object类中finalize()方法
 */
public class CanReliveObject {

    public static CanReliveObject ref;

    @Override
    protected void finalize() throws Throwable {
        System.out.println("调用当前类重写的finalize()方法");
        //当前待回收的对象重新加入引用链
        ref = this;
    }

    public static void main(String[] args) {

        ref = new CanReliveObject();

        ref = null;
        //调用垃圾回收
        System.gc();
        System.out.println("第一次GC执行完毕");

        /**
         * 因为finalize优先级较低 主线程暂停2s 等待它
         */
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        if(ref == null){
            System.out.println("对象已死");
        }else {
            System.out.println("对象未死");
        }
        ref = null;
        System.gc();
        System.out.println("第二次GC执行完毕");
        if(ref == null){
            System.out.println("对象已死");
        }else {
            System.out.println("对象未死");
        }
    }

}

引用对象ref刚开始指向一个对象,==此时为可触及状态==然后让他指向null,==此时为可复活状态==手动调用GC,此时处于会回调执行重写的finalize方法,方法中给这个引用重新赋值了,所以此时为==可触及状态==

再次指向NULL,此时为==不可触及状态==(finalize方法只执一次),所以对象此时已经死了。

结果:

第一次GC执行完毕
调用当前类重写的finalize()方法
对象未死
第二次GC执行完毕
对象已死

三、MAT与JProfiler的GCRoots溯源

public class GCRootsTest {
    public static void main(String[] args) {
        List<Object> numList = new ArrayList<>();
        Date birth = new Date();

        for (int i = 0; i < 100; i++) {
            numList.add(String.valueOf(i));
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        System.out.println("数据添加完毕,请操作:");
        new Scanner(System.in).next();
        numList = null;
        birth = null;

        System.out.println("numList、birth已置空,请操作:");
        new Scanner(System.in).next();

        System.out.println("结束");
    }
}

使用Jprofiler打开程序

点击左侧image-20210704131301662

选择image-20210704131312462

选择一个元素 点击image-20210704131341325

即可显示该元素的GCGoots链

MAT查看略。

使用Jprofiler查看OOM

// -Xms8m -Xmx8m -XX:+HeopDumpOnOutOfMemoryError
public class HeapOOM {

    //占1M
    byte [] bytes = new byte[1024 * 1024 * 1];

    public static void main(String[] args) {

        List list = new ArrayList();
        int count = 0;
        try {
            while (true){
                list.add(new HeapOOM());
                count++;
            }
        }catch (Throwable t){
            System.out.println(count);
            t.printStackTrace();
        }
    }
}

每个HeapOOM对象中有一个10M的bytes数组。循环创建 直到堆OOM

运行代码 生成dump文件。用Jprofiler打开 发现

image-20210704132433192

确实有一个arrayList对象占用超过90%

四、清除阶段

当成功区分出内存中存活对象和死亡对象之后,GC接下来的任务就是执行垃圾回收,释放掉无用对象所占用的空间。目前比较常用的算法有三种

  • 标记清除算法
  • 复制算法
  • 标记压缩算法

1、标记清除算法(Mark-Sweep)

  • 背景

    • 标记清除算法是一种非常基础和常见的垃圾收集算法
  • 执行过程

    • 当堆中的有效内存空间被耗尽时,就会停止程序STW,然后进行标记-清除

      image-20210704133431320

      • 标记:Collector从引用的根节点开始遍历,标记所有的被引用的对象,在对象的对象头中记录为可达对象
      • 清除:将对象头中没有标记为可达对象的对象进行清除
  • 优点:

    • 常用,简单
  • 缺点

    • ➢效率不算高(两次O(n))
    • ➢在进行GC的时候,需要停止整个应用程序,导致用户体验差
    • ➢这种方式清理出来的==空闲内存是不连续的,产生内存碎片==。需要维护一个空闲列表
  • 何为清除?

    • 这里所谓的清除并不是真的置空,而是把需要清除的对象地址保存在空闲

      的地址列表里。下次有新对象需要加载时,判断垃圾的位置空间是否够,如果够,就存放。

2、复制算法

  • 背景

    ​ 为了解决标记清除算法效率方面的问题,M.L.Minsky于1963年发表了著名的论文,“ 使用双存储区的Li sp语言垃圾收集器CALISP Garbage Collector Algorithm Using SerialSecondary Storage )”。M.L. Minsky在该论文中描述的算法被人们称为复制(Copying)算法,它也被M. L.Minsky本人成功地引入到了Lisp语言的一个实现版本中。

  • 核心思想

    ​ 将活着的内存空间分为两块,每次使用一块,进行垃圾回收的时候,将存活对象复制到另一块未使用的区域,然后将源区域清空,然后交换两个内存的角色

    image-20210704134558378

  • 优点:

    • 没有标记和清除过程,实现简单,==运行高效==
    • 复制过去以后保证==空间连续性==,不会出现“碎片”问题。
  • 缺点:

    • 此算法的缺点也是很明显的,就是需要两倍的内存空间。

    • 对于G1这种分拆成为大量region的GC,复制而不是移动,意味着GC需要维护region之间对象引用关系,不管是内存占用或者时间开销也不小。

    • 特别的 如果系统中的可用对象很多,复制算法不会很理想,因为要复制大量的对象

    在新生代,对常规应用的垃圾回收,一次通常可以回收708一 99的内存空间。回收性价比很高。所以现在的商业虚拟机都是用这种收集算法回收新生代。

3、标记压缩算法

  • 背景

    复制算法的高效性是建立在存活对象少、垃圾对象多的前提下的。这种情况在新生代经常发生,但是在老年代,更常见的情况是大部分对象都是存活对象。如果依然使用复制算法,由于存活对象较多,复制的成本也将很高。因此,基于老年代垃圾回收的特性,需要使用其他的算法。 标记一清除算法的确可以应用在老年代中,但是该算法不仅执行效率低下,而且在执行完内存回收后还会产生内存碎片,所以JVM的设计者需要在此基础之上进行改进。==标记一压缩(Mark一Compact) 算法由此诞生==。 1970年前后,G. L. Steele 、C. J. Chene和D.S. Wise 等研究者发布标记一压缩算法。在许多现代的垃圾收集器中,人们都使用了标记一压缩算法或其改进版本。

执行过程

  • 第一阶段和标记一清除算法一样,从根节点开始标记所有被引用对象.
  • 第二阶段将所有的存活对象压缩到内存的一端,按顺序排放。
  • 之后,清理边界外所有的空间。

图示

image-20210704140307884

  • 标记一压缩算法的最终效果等同于标记一清除算法执行完成后,再进行一次内存碎片整理,因此,也可以把它称为标记一清除一压缩(Mark一 Sweep一Compact)算法。

  • 二者的本质差异在于==标记清除算法是一种非移动式==的回收算法,==标记压.缩是移动式==的。是否移动回收后的存活对象是一项优缺点并存的风险决策。

  • 可以看到,标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被清理掉。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销。

  • 指针碰撞(Bump the Pointer )

如果内存空间以规整和有序的方式分布,即已用和未用的内存都各自一边,彼此之间维系着一个记录下一次分配起始点的标记指针,当为新对象分配内存时,只需要通过修改指针的偏移量将新对象分配在第一个空闲内存位置上,这种分配方式就叫做指针碰撞(Bump the Pointer) 。

  • 优点

    • 消除了标记一清除算法当中,内存区域分散的缺点,我们需要给新对象分配内存时,JVM只 需要持有一个内存的起始地址即可。
    • 消除了复制算法当中,内存减半的高额代价。
  • 缺点

    • 从效率.上来说,标记一整理算法要低于复制算法。
    • 移动对象的同时,如果对象被其他对象引用,则还需要调整引用的地址。
    • 移动过程中,需要全程暂停用户应用程序。即: STW
  • 对比

    属性\算法标记清除算法复制算法标记压缩算法
    时间复杂度
    空间复杂度占用2倍
    内存碎片
    移动对象

4、分代收集算法

难道就没有一种最优的算法么?

==没有最好的算法,只有更合适的算法==

前面所有这些算法中,并没有一种算法可以完全替代其他算法,

它们都具有自己独特的优势和特点。分代收集算法应运而生。 分代收集算法,是基于这样一个事实:不同的对象的生命周期是不一样的。

因此,==不同生命周期的对象可以采取不同的收集方式,以便提高回收效率==。

一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点使用不同的回收算法,

以提高垃圾回收的效率。

在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,

  • 比如Http请求中的Session对象、线程、Socket连接, 这类对象跟业务直接挂钩,因此生命周期比较长
  • 但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如: String对象, 由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至只用一次即可回收。

  目前几乎所有的GC都是采用分代收集(Generational Collecting) 算法执行垃圾回收的。  

​ 在HotSpot中,基于分代的概念,GC所使用的内存回收算法必须结合年轻代和老年代各自的特点。

  • 年轻代(Young Gen)
    • 年轻代特点:区域相对老年代较小,对象生命周期短、存活率低,回收频繁。
    • 这种情况==复制算法==的回收整理,速度是最快的。复制算法的效率只和当前存活对象大小有关,因此很适用于年轻代的回收。而复制算法内存利用率不高的问题,通过hotspot中的两个survivor的设计得到缓解。·
  • 老年代(Tenured Gen)
    • 老年代特点:区域较大,对象生命周期长、存活率高,回收不及年轻代频繁。
    • 这种情况存在大量存活率高的对象,复制算法明显变得不合适。一般是由标记清除或者是标记整理的混合实现。
      • ➢标记阶段的开销与存活对象的数量成正比。
      • ➢清除阶段的开销与所管理区域的大小成正相关。
      • ➢压缩阶段的开销与存活对象的数据成正比。

  以HotSpot中的CMS回收器为例,CMS是基于标记清除实现的,对于对象的回收效率很高。而对于碎片问题,CMS采用基于标记压缩算法的Serialold回收器作为补偿措施:当内存回收不佳(碎片导致的执行失败时),将采用Serial 0ld执行Full GC(标记整理算法)以达到对老年代内存的整理。 分代的思想被现有的虚拟机广泛使用。几乎所有的垃圾回收器都区分新生代和老年代。

5、增量收集算法

上述现有的算法,在垃圾回收过程中,应用软件将处于一种stop the World的状态。在Stop the World状态下,应用程序所有的线程都会挂起,暂停一切正常的工作,等待垃圾回收的完成。如果垃圾回收时间过长,应用程序会被挂起很久,将严重影响用户体验或者系统的稳定性。为了解决这个问题,即对实时垃圾收集算法的研究直接导致了增量收集(Incremental Collecting) 算法的诞生。

  • 基本思想

  如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么就可以让垃圾收集线程和应用程序线程交替执行。每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程。依次反复,直到垃圾收集完成。 总的来说,增量收集算法的基础仍是传统的标记清除和复制算法。增量收集算法通过对线程间冲突的妥善处理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作

  • 缺点:

使用这种方式,由于在垃圾回收过程中,间断性地还执行了应用程序代码,所以能减少系统的停顿时间。但是,因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降。

6、分区算法

 一般来说,在相同条件下,堆空间越大,一次GC时所需要的时间就越长,有关GC产生的停顿也越长。为了更好地控制GC产生的停顿时间,将一块 大的内存区域分割成多个小块,根据目标的停顿时间,每次合理地回收若干个小区间,而不是整个堆空间,从而减少一次GC所产生的停顿。 分代算法将按照对象的生命周期长短划分成两个部分,分区算法将整个堆空间划分成连续的不同小区间。 每一个小区间都独立使用,独立回收。这种算法的好处是可以控制一次回收多少个小区间。 16

五、小结

这些只是基本的算法思路,实际GC实现过程要复杂的多,目前还在发展中的前沿GC都是复合算法,并且并行和并发兼备。

JAVA
  • 作者:杜少雄(联系作者)
  • 发表时间:2021-07-04 14:40
  • 版权声明:自由转载-非商用-非衍生-保持署名(创意共享3.0许可证)
  • 评论